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Deterministic feedbacks within populations interact with extrinsic, stochastic processes to generate complex patterns of 
animal abundance over time and space. Animals inherently differ in their responses to fluctuating environments due to 
differences in body sizes and life history traits. However, controversy remains about the relative importance of determin-
istic and stochastic forces in shaping population dynamics of large and small mammals. We hypothesized that effects of 
environmental stochasticity and density dependence are stronger in small mammal populations relative to their effects in 
large mammal populations and thus differentiate the patterns of population dynamics between them. We conducted an 
extensive, comparative analysis of population dynamics in large and small mammals to test our hypothesis, using seven 
population parameters to describe general dynamic patterns for 23 (14 species) time series of observations of abundance of 
large mammals and 38 (21 species) time series for small mammals. We used state-space models to estimate the strength of 
direct and delayed density dependence as well as the strength of environmental stochasticity. We further used phylogenetic 
comparative analysis to detect differences in population dynamic patterns and individual population parameters, respec-
tively, between large and small mammals. General population dynamic patterns differed between large and small mam-
mals. However, the strength of direct and delayed density dependence was comparable between large and small mammals. 
Moreover, the variances of population growth rates and environmental stochasticity were greater in small mammals than in 
large mammals. Therefore, differences in population response to stochastic forces and strength of environmental stochastic-
ity are the primary factor that differentiates population dynamic patterns between large and small mammal species.

Understanding the forces that create variability in the abun-
dance of organisms is a central, organizing goal of popula-
tion ecology (Krebs 2003, Turchin 2003, Hastings 2010). 
Sources of population variability include deterministic and 
stochastic processes that interact to generate complex pat-
terns of animal abundance over time and space (Turchin 
2003, Coulson et al. 2004, Boyce et al. 2006, Melbourne 
and Hastings 2009). These patterns result in part from  
stochastic demographic responses to temporally varying 
environments (i.e. environmental stochasticity) and in part 
deterministic, direct and delayed feedbacks from popula-
tion density to population growth rate (hereafter, direct and 
delayed density dependence) (Forchhammer et al. 1998, 
Ives et al. 2003, Lande et al. 2003, Coulson et al. 2004). 
Density dependence results from competitive interactions 
within a population (Forchhammer et al. 1998), whereas the 
causes of environmental stochasticity include extrinsic sto-
chastic forces, such as climate, interspecific interactions, and 
anthropogenic disturbances (Ives et al. 2003, Coulson et al. 
2004). Therefore, multivariate analysis of the deterministic 

and stochastic forces together is needed to understand how 
the two forces shape the dynamics of animal populations.

Organisms differ inherently in their demographic 
responses to fluctuating environments owing to differences 
in life histories (Saether et al. 1996). Body size is a predictor 
of many of these life history traits (Read and Harvey 1989, 
Sibly and Brown 2007, Fagan et al. 2010), and as a result, 
it is reasonable to expect that large- and small-sized animals 
should exhibit fundamentally different responses to environ-
mental variation (Caughley and Krebs 1983, Sinclair 1989, 
Krebs 2009). Small and large mammals differ by orders of 
magnitude in their body mass and, as a result, offer a par-
ticularly useful model system for examining how character-
istics of species entrain population dynamics (Sinclair 2003, 
Sibly and Brown 2007, Fagan et al. 2010). Small mammals 
have greater intrinsic rates of population increase and shorter 
lifespan than do large mammals. As a result, small mammal 
populations have higher turnover rates and greater tempo-
ral variability relative to large mammal populations (Perrin 
1989, Sinclair and Krebs 2002). On the other hand, large 
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mammals have physiological and behavioral traits that atten-
uate effects of environmental fluctuations in resources and 
it is believed that these traits should act to reduce temporal 
variance in population abundances (Lindstedt and Calder 
1981, Erb et al. 2001). As a general rule, ungulates are capi-
tal breeders, fattening their body, storing energy in autumn 
for winter survival and reproduction, and producing one or a 
few offspring in a year (Gaillard et al. 2000, Erb et al. 2001). 
In contrast, most small mammals have little physiologi-
cally buffering capacity against environmental fluctuations 
as income breeders (Perrin 1989, Innes and Millar 1994). 
Therefore, small mammals are adapted to changing resource 
availability or environments, and their populations are pre-
dicted to have greater environmental stochasticity than those 
of large mammals.

Recent studies have shown that density dependence 
is common in large and small mammal populations (Erb  
et al. 2001, Lima et al. 2006, Bonenfant et al. 2009). With 
a high intrinsic rate of increase, small mammal populations 
can increase dramatically within a season or a year under 
favorable conditions. Rapid increases in abundances may 
deplete food or other resources, result in intraspecific com-
petition for food and space, and immediately reduce survival 
and breeding efforts (Ostfeld et al. 1993). In the long run, 
density dependence may be manifested more frequently 
and more strongly in small mammals with more dramatic 
fluctuations of population sizes than in large mammals with 
relatively stable population dynamics. Therefore, it is plau-
sible to hypothesize that the strength of direct and delayed 
density dependence is stronger in small mammals than in 
large mammals. Alternatively, observed predicable long-term 
trends may suggest strong direct density dependence, but 
weak delayed density dependence in large mammals.

Despite the intuitive appeal of these predictions, few 
empirical studies have investigated how differences in life 
history between large and small mammals create differences 
in their population trajectories. Erb et al. (2001) found that 
the abundance of large mammal populations tends to remain 
relatively stable, whereas small mammal populations are tem-
porally variable; they ascribed these differences to direct and 
delayed density dependence. For example, stronger delayed 
density dependence may create greater population variation, 
and high intrinsic rate of increase and strong nonlinear den-
sity dependence may result in chaotic patterns in small mam-
mal populations (Erb et al. 2001). However, these authors 
did not directly estimate the strength or variance of environ-
mental stochasticity. It remains unknown how differences in 
environmental stochasticity shape the dynamic patterns of 
large and small mammal populations (Coulson et al. 2004, 
Boyce et al. 2006). Furthermore, the regulation of popula-
tion dynamics is multifactorial. Little is known about the 
set of population parameters (i.e. population growth rates, 
density dependence, and (or) environmental stochasticity) 
that differentiate population dynamic patterns between large 
and small mammals.

Resolving these questions requires an extensive, compara-
tive analysis of population dynamics in large and small mam-
mals. We compared a suite of seven population parameters 
to identify fundamental differences in trajectories of large 
and small mammal populations and related these differences 
to life history characteristics. Our objectives were to: 1) test 

the hypothesis that the effects of environmental stochasticity 
and density dependence are stronger in small mammal pop-
ulations relative to their effects in large mammal populations 
and thus differentiate the patterns of population dynamics 
between them; and 2) test the hypothesis that direct density 
dependence stabilizes mammal population dynamics (i.e. an 
inverse relationship between the strengths of environmen-
tal stochasticity and direct density dependence), whereas 
delayed density dependence destabilizes mammal population 
dynamics. We used state-space time series models to sepa-
rate measurement error from process error or environmental 
stochasticity. In addition, we used phylogenetic compara-
tive analysis to account for phylogenetic interdependence 
or inertia when comparing population parameters between 
large and small mammals. Therefore, our study provided 
general insight into the role of life history characteristics (pre-
dicted by body sizes) in shaping dynamics of large and small  
mammal populations.

Methods

Population time series

We re-analyzed a total of 61 time series of annual popula-
tion counts or indices for 14 species of large mammals and 
21 species of small mammals, including 23 large herbivore 
populations and 38 small mammal populations. Large her-
bivores included alpine ibex Capra ibex, bighorn sheep Ovis 
canadensis, bison Bison bison, elk Cervus elaphus, caribou 
Rangifer tarandus, fallow deer Dama dama, moose Alces alces, 
mule deer Odocoileus hemionus, muskox Ovibos moschatus, 
red deer Cervus elaphus, reindeer Rangifer tarandus, roe 
deer Capreolus capreolus, sika deer Cervus nippon, and Soay 
sheep Ovis aries. The 23 large herbivore population time 
series were animal counts on foot or from air (Wang et al. 
2009a). We used small mammal population time series that 
were collected from live-trapping or kill-trapping studies. 
Locations, study periods, trapping and estimation methods, 
and references or sources of small mammal data are listed in 
Supplementary material Appendix 1, Table A1. The 61 time 
series used in our analyses were made available for this study 
through previous collaboration. We did not choose a specific 
set of species, populations, and study locations from a larger 
pool of data sets for our analyses. Inclusion of more time 
series would improve the generality of our conclusions. 

Statistical analysis

We fit the Gompertz population model (Gompertz 1825) to 
each population time series to estimate the parameters mea-
suring the strengths of direct density dependence, delayed 
density dependence, and environmental stochasticity. Forch
hammer et al. (1998) found that the Gompertz model tended 
to outperform the Ricker model for the population time 
series of red deer in Norway. Three models derived from the 
global model ln(Nt)  a  (1  b) ln(Nt1)  cln(Nt2) 
were fit to each time series of annual log-transformed popu-
lation abundances, where a is the intercept, 1  b measures 
the strength of direct density dependence, and c measures 
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the strength of delayed density dependence (Royama 1992). 
When b is negative (or [1  b] is 1), increases in the mag-
nitude of b (or decreases in [1  b]) indicate increasingly 
strong, direct, negative effects of population densities on per 
capita population growth rates. Likewise, if c  0, increases 
in the magnitude of c suggest increasingly strong, delayed, 
negative effects of population densities on per capita popula-
tion growth rates. The three models were: a) the exponential 
growth model (b  0, c  0); b) the order 1 autoregressive 
(AR) model (c  0); and c) the global model, i.e. AR (2) 
model. Model selection was done using corrected Akaike 
information criterion (AICc), and model uncertainty was 
measured with the Akaike weight (Burnham and Anderson 
2002).

Estimates of animal abundance have inherent measure-
ment errors that may bias estimates of the strength of 
density dependence (Stenseth et al. 2003). To account 
for measurement errors, we used the classic Kalman filter 
(KF; Kalman 1960), a state-space model, to analyze time 
series of annual population abundance (Nt). In state-space 
models, a true state variable or true abundance Xt is unob-
servable; however, the observation Yt (lnNt) of appar-
ent population size is the true size (Xt) plus a random 
measurement error (ut), i.e. Yt  Xt   ut. Therefore, the 
structural form of the AR(2) Gompertz model (Royama 
1992) is given by:

Xt  a  (1  b)Xt1  cXt2  et� (1)

Yt  Xt   ut� (2)

Error terms et and ut are assumed to be normal and condition-
ally independent of each other and independent over time, 
i.e. et ∼ N(0,se

2), ut ∼ N(0,su
2), Corr(et, ut)  0. Equations 

(1) and (2) were cast into the KF (Wang et al. 2006). The 
variance se

2 represents the effects of environmental sto-
chasticity. However, we noted that animal counts may be a 
biased index of population sizes or abundances. For example, 
counts of alpine ibex in Belledone, France underestimated 
ibex population sizes, particularly at large population sizes 
(Gaillard et al. 2003). The estimation bias of population sizes 
may result in the bias in estimation of population param-
eters. State-space models do not correct for potential estima-
tion bias of population parameters from the biased estimates 
or indices of population sizes.

Model parameters a, b, c, su
2 and se

2 were estimated using 
maximum likelihood methods. We maximized the complete 
data log-likelihood function yielded by the KF (Shumway 
and Stoffer 2000) using the expectation-maximization 
(EM) algorithm (Dempster et al. 1977). The maximized 
likelihood was used to compute AICc and Akaike weights 
(Burnham and Anderson 2002). Akaike weights were used 
to compute model-averaged estimates of parameters b, 
c and se

2 to account for model selection uncertainty. For 
example, the model-averaged estimate (b

∼
) of the parameter 

b was computed as the weighted average of maximum likeli-
hood estimates (b

∼
r) from the three candidate models (i.e. the  

exponential, AR(1), and AR(2) models):

b w br r
r

3 


1
∑

where wr is the Akaike weight for model r. We also calcu-
lated relative importance indices of direct density depen-
dence and delayed density dependence by summing the 
Akaike weights over all models that include direct den-
sity dependence and delayed density dependence terms, 
respectively.

We assumed lognormal distributions for population time 
series data (Halley and Inchausti 2002). We applied natural 
logarithm-transformations on all population time series to 
normalize the data. We checked the model assumptions on 
model errors following Harvey (1989: 259). Inspection of 
the sample autocorrelation function (ACF) plot indicated 
that the residuals were not serially correlated. Quantile-
quantile (Q-Q) plots were consistent with the assumption of 
normally distributed residuals (Sokal and Rohlf 1995).

We estimated seven population parameters plus latitude 
of population habitats to characterize dynamics of large and 
small mammal populations (Table 1 for the definitions of 
the seven parameters). We determined the patterns of popu-
lation dynamics using the location of the parameters 1  b 
and c in the parameter space/plane of the AR(2) model  
(Fig. 1; Royama 1992). A location of the parameter pair 
(1  b, c) in region I indicates that a population increases or 
decreases to a stable trajectory. If the parameter pair is located 
in the region II, a population has a two-year cycle. A location 
in the region III or IV below the parabolic curve (b2  4c   
0) inside the triangle (defined by the lines 1  bc  0, 1  
bc  0, and 1  c  0) is statistical evidence supporting 
multi-annual cyclic fluctuations of a population conforming 
to the AR(2) model (Fig. 1; Royama 1992, Stenseth 1999).

We used phylogenetic comparative analysis to detect 
differences in the pattern of population dynamics between 
large and small mammals, accounting for potential phylo-
genetic dependence in the estimates of a population param-
eters among the 35 mammal species (Freckleton et al. 2002, 
Freckleton 2009). We first obtained the sequences of the 
cytochrome (cyt) b gene from GenBank (www.ncbi.nlm.
nih.gov/nuccore) to reconstruct the phylogenetic tree of 
the 35 mammal species (Supplementary material Appendix 
2 for the methods and results of the phylogeny reconstruc-
tion). Then we used phylogenetic multivariate analysis of 
variance (MANOVA) to test for differences in general popu-
lation dynamic patterns depicted by the seven population 
parameters (Freckleton 2009, Harmon et al. 2009). If the 
null hypothesis was rejected in phylogenetic MANOVA, 
we applied phylogenetic generalized estimating equations 
(GEE) to detect differences in individual population param-
eters between large and small mammals (Paradis and Claude 
2002). Phylogenetic GEE are a general extension of phylo-
genetic generalized least square (PLGS) models, with a fixed 
correlation matrix derived from a known phylogenetic tree 
to account for phylogenetic dependence (Paradis and Claude 
2002). Phylogenetic MANOVA uses randomization proce-
dures to simulate a large number of data sets (n  2000 in our 
study) of compared characters on a phylogenetic tree under 
the Brownian motion model for the evolution of compared 
characters and then applies classical MANOVA to each set 
of simulated data to construct an empirical null distribution 
of Wilks’ test static for testing the null hypothesis (Garland 
et al. 1993, Harmon et al. 2009). However, phylogenetic 
GEE do not assume a specific model for the evolution of 
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Table 1. Definitions of the parameters used to characterize the  
patterns of mammal population dynamics. 

Name of parameter Symbol Definition

Coefficient b b the coefficient of the term Xt1 
in the Gompertz model

Coefficient c c the coefficient of the term Xt2 
in the Gompertz model

Latitude lat latitude of habitat
Population growth 

rate
pgr the difference of log popula-

tion sizes between years t 
and t1, i.e. Xt – Xt1

Relative  
importance of 
density 
dependence

DD the variable importance of 
density dependence, 
calculated as the sum of 
Akaike weights over all 
models that have density 
dependence terms

Relative  
importance of 
delayed density 
dependence

IDD the variable importance of 
delayed density depen-
dence, calculated as the 
sum of Akaike weights over 
all models that have 
delayed density depen-
dence terms

Variance of 
population 
growth rate

var1 the sample variance of 
population growth rates 
over the study period

Variance of 
environmental 
stochasticity

var2 the variance of process error 
that represents all 
unspecified stochastic 
variation in the Gompertz 
population model

Figure 1. The Royama parameter plane of the order-2 autoregres-
sive population models. The ordinate is the value of coefficient 
1  b measuring the strength of direct density dependence. The 
abscissa is the value of coefficient c measuring the strength of 
delayed dependent dependence.

compared characters (Paradis and Claude 2002). We used 
the mean of the population-specific estimates of a popula-
tion parameter for a mammal species in our phylogenetic 
comparative analyses if the species had several population 
time series, as we did not have the cyt b sequence for each of 
those populations.

We also conducted principal component analysis (PCA) 
to illustrate differences in general patterns of population 
dynamics between large and small mammals. Principal com-
ponent analysis is a dimension-reducing technique, using 
a set of principal components fewer than the original vari-

ables to model variability in original multivariate data and 
to illustrate any grouping of the original data in a reduced 
dimensional space (e.g. 2–3 principal components). Principal 
components are linear combinations of original variables and 
are perpendicular to one another (orthogonal). We tested the 
multivariate-normality assumption for our multivariate data 
used in the PCA using chi square probability plots described 
by Everrit (2004). The chi square plot of our data was approx-
imately linear, suggesting the normality of our data.

We also investigated relationships between log-trans-
formed variance of environmental stochasticity and coeffi-
cients 1  b and c using phylogenetic GEE. We used the 
quasi likelihood information criterion (QIC), an equivalent 
of AIC, to select the best approximating GEE (Pan 2001). 
The best model has the lowest QIC value among a set of 
four candidate models: 1) M1 with intercept only, i.e. the 
null model; 2) M2 with intercept and direct density depen-
dent term (1  b); 3) M3 with intercept and delayed density 
dependent term (c); and 4) M4 with intercept, direct den-
sity dependent term (1  b), and delayed density dependent 
term (c). We carried out phylogenetic MANOVA and GEE 
using the R package GEIGER (Harmon et al. 2009) and 
APE (Paradis et al. 2004), respectively, in the R ver. 2.13.0 
(R Development Core Team). 

Results

Population-specific estimates of the strength of direct and 
delayed density dependence and the variances of environ-
mental stochasticity and population growth rates tended  
to be greater in small mammals than in large mammals  
(Fig. 2). Values of coefficient c for delayed density dependence 
ranged from 0.06 to 0.38 in large mammal populations, 
but from 0.86 to 0.63 in small mammal populations. All 
23 large mammal populations were located in the region I 
of the Royama parameter plane (Fig. 3a), indicating a steady 
increase or decrease in population abundance, whereas small 
mammal populations were distributed in all four regions 
(Fig. 3b).

Phylogenetic MANOVA showed that general patterns 
of population dynamics, which were described by the seven 
population parameters, differed between large and small 
mammals (Wilks l  0.37, p  0.0005). However, only 
two population parameters differed between large and small 
mammals in the univariate tests for individual parameters. 
The variances of population growth rate and environmental 
stochasticity were greater in small mammals than in large 
mammals (variance of population growth rate: p  0.0, 
DF  18.5; and variance of environmental stochasticity: 
p  0.03, DF  18.5). Average population growth rates 
and the strength of direct and delayed density dependence 
did not differ between small and large mammals (popula-
tion growth rates: p  0.96, DF  18.5; direct density 
dependence: p  0.19, DF  18.5; and delayed density 
dependence: p  0.54, DF  18.5). Additionally, the first 
two principal components explained 54% the total vari-
ability. Although large and small mammal populations were 
not tightly clustered in the biplot of first two principal com-
ponents (Fig. 4), the two groups were somewhat separated 
along the direction of the variances of population growth 
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Figure 2. Comparisons of strength of density dependence and delayed density dependence and variances of environmental stochasticity and 
population growth rates between large and small mammals. The symbols 1  b, c, var1, and var2 represent the coefficient of direct density 
dependence, the coefficient of delayed density dependence, the variance of population growth rate, and the variance of environmental 
stochasticity, respectively.

Figure 3. The parameter plane of the second order autoregressive Gompertz models of (a) 23 large mammal populations and (b) 38 small 
mammal populations. Symbols L1–L23 and S1–S38 represent coefficient pairs (1  b, c) in the parameter space for 23 large mammal and 
38 small mammals populations, respectively; symbol 1  b is the coefficient of direct density dependence; and letter c is the coefficient of 
delayed density dependence. Populations below the parabola and in the range from 0 to 1 on the horizontal axis 1  b have multi-annual 
cycles.

rate and environmental stochasticity, as indicated by the 
arrows for the variance of population growth rate (var1) and 
the variance of environmental stochasticity (var2) in Fig. 4.

The QIC values of models M1, M2, M3, and M4 (see 
the method section for the GEE model notation) were 
125.3, 93.5, 117.2, and 93, respectively. Among the four 
candidate models, the models with intercept and direct 
density dependent term (M2) and with intercept, direct 
density dependence, and delayed density dependence (M4) 
received more support from data, with QIC weights being 
0.437 and 0.562, respectively. The two competing were 
of the forms: M2: lvar2  1.442.36(1  b) and M4: 
lvar2  1.692.09(1  b)1.01c respectively. Symbol 
lvar2 was the log-transformed variance of environmental 

stochasticity. The standard errors of regression coefficients 
were 0.56 (for 1  b) in M2 and 0.61 (for 1  b) and 0.89 
(for c) in M4, respectively. Thus, our results of model selec-
tion showed substantial support for the inverse relationships 
between the values of lvar2 and c and between the values of 
lvar2 and (1  b).

Discussion

The results we offer here add to a growing body of work  
that seeks to understand how population dynamics are shaped 
by internal feedbacks from population density to population 
growth rate and by external forcing from stochastic influences, 
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variability and environmental stochasticity (var and var2) 
somewhat separated large and small mammals (Fig. 4), illus-
trative of and consistent with the conclusions of our phylo-
genetic comparisons.

Our results corroborate the findings of others that also have 
shown that direct density dependence is common in both 
large and small mammals (Erb et al. 2001, Lima et al. 2006, 
Bonenfant et al. 2009). However, we found that strength 
of direct and delayed density dependence was comparable 
between large and small mammals using phylogenetic GEE. 
Bonenfant et al. (2009) reviewed the recent literature for the 
evidence of density dependence in demographic parameters 
of large herbivores from the studies of 27 species. They found 
widespread responses in demographic parameters, including 
both survival and reproduction, to change in densities across 
large herbivores, and that the responses were age dependent 
(Bonenfant et al. 2009). Additionally, Forchhammer et al. 
(1998) found delayed density dependence in three of the 
five red deer population time series from Norway. Sinclair 
(1989) suggested that increasing population densities may 
reduce recruitment to breeding populations in small mam-
mals. However, mechanisms of density dependence are 
poorly understood for small mammals (Krebs 2009). There 
is a lack of general theoretic models and systematic empiri-
cal studies of sequential changes of demographic parameters 
with increasing population densities for small mammals.

Our results did not support our hypothesis regarding the 
inverse relationship between the strengths of environmen-
tal stochasticity and direct density dependence. We found 
that naturally logged variances of environmental stochastic-
ity decreased with increasing values of 1  b (i.e. decreas-
ing strength of direct density dependence), which suggests 
either that greater environmental stochasticity induces direct 
density dependence (Wang et al. 2006) or that strong direct 
density dependence is needed to stabilize population dynam-
ics with increasing environmental stochasticity. Likewise, 
naturally logged variances of environmental stochasticity 
decreased with increasing values of coefficient c (i.e. decreas-
ing strength of delayed density dependence), which suggests 
that increasing strength of delayed density dependence may 
increase population variability, as is widely assumed (Hansson 
and Henttonen 1985, Hanski et al. 1991). Strong delayed 
density dependence is a necessary condition of population 
cycles (Fig. 1, 2; Royama 1992, Stenseth 1999). Differences 
in the strength of delayed density dependence along a spa-
tial gradient among populations within the same species 
may result in a spatial cline of population cyclicity in small 
rodents (Tkadlec and Stenseth 2001, Stenseth et al. 2002a, 
Wang et al. 2009b). Climate effects and interspecific interac-
tions such as with specialist predators are believed to be the 
primary causes of delayed density dependence (Hansson and 
Henttonen 1985, Royama 1992, Stenseth 1999). However, 
Krebs (2009) contends that the assumption that external 
forces such as predation or climate changes result in delayed 
density dependence is not justifiable. The causes and demo-
graphic mechanisms of delayed density dependence still 
remain elusive. Future studies are needed to elucidate the 
demographic mechanisms for delayed density dependence of 
mammal populations.

In conclusion, responses to stochastic forces or varia-
tions in the strength of environmental stochasticity are the 

particularly the effects of variability in weather (Grenfell  
et al. 1998, Stenseth et al. 2002a, b, 2003, Coulson et al. 
2004, Tyler 2010). Here we use the contemporary view of 
animal population regulation, which differs from the classic 
ideas of Caughley and Krebs (1983) about effects of body size 
on population dynamics of mammals, with different mean-
ings for the terms ‘external’ and ‘internal.’ Contemporary 
work uses external regulation to mean the effects of stochas-
tic variables like weather and internal regulation to refer 
to density dependence (Turchin 2003: 138, Coulson et al. 
2004). In contrast, Caughley and Krebs (1983) limit the use 
of internal to mean self-regulating behavioral mechanisms 
and external regulation to mean interactions between popu-
lations and varying resources. Thus, in the contemporary 
view, external forcing does not include density dependence 
although the two forces may co-vary, while in Caughley 
and Krebs’ view, it does. This distinction is important here 
because the predictions of Caughley and Krebs theory about 
body size and population dynamics do not apply to the work 
we report here, which focuses on external and internal con-
trols in the contemporary uses of the terms.

Our results support the hypothesis that difference in 
the strength of environmental stochasticity may differenti-
ate population dynamic patterns between large and small 
mammals. The variances of population growth rates and 
environmental stochasticity were the only parameters that 
differed and might result in different patterns of popula-
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netic MANOVA: p  0.0005). Small mammal populations 
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(p  0.05). Although the first two principal components 
explained only 54% of total variance, the distributions  
of large and small mammal populations in the biplot of the 
two components suggested that difference in population 

Figure 4. Biplot of principal component analysis of eight popula-
tion parameters of 23 large mammal and 38 small mammal popula-
tions. Arrows stand for original variables. Symbols indicate 
projections of mammal populations in the space defined by the first 
two principal components.
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primary factor that differentiates the patterns of population 
dynamics between large and small mammals, while variation in 
the strength of density dependence alone fails to explain these 
differences in population dynamics. Strengths of direct and 
delayed density dependence are positively related to the strength 
of environmental stochasticity of mammal populations.
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